

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN

INVESTIGACIÓN DE OPERACIONES

EJERCICIOS DE LÍNEAS DE ESPERA

Materia: Matemáticas VI

Ciudad Universitaria a 2 de Junio del 2014

CONTENIDO

LÍNEAS DE ESPERA

© Ejercicio 1	3
Solución del Ejercicio 1	3, 4
	6
Solución del Ejercicio 2	6
☞ Ejercicio 3	9
Solución del Ejercicio 3	9

EJERCICIO 1¹

Un promedio de 10 automóviles por hora llegan a un cajero con un solo servidor que proporciona servicio sin que uno descienda del automóvil. Suponga que el tiempo de servicio promedio por cliente es de 4 minutos, y que tanto los tiempos entre llegadas y los tiempos de servicio son exponenciales. Conteste las preguntas siguientes:

- a) ¿Cuál es la probabilidad de que el cajero este ocioso?.
- b) ¿Cuál es el número promedio de automóviles que están en al cola del cajero?.
 Se considera que un automóvil esta siendo no está en al cola esperando.
- c) ¿Cuál es la cantidad promedio de tiempo que un cliente pasa en el estacionamiento del banco (incluyendo el tiempo de servicio)?.
- d) ¿Cuántos clientes atenderá el cajero en promedio por hora?.

SOLUCIÓN DEL EJERCICIO 1

Solución: De a cuerdo a lo expuesto en el **Problema**; las premisas se está trabajando con un **sistema de colas M/M/I/GD/**∞/∞; cuya información proporcionada es la siguiente:

¹ Tomado del libro Wayne L. Winston, *Investigación de operaciones. Aplicaciones y algoritmos,* México: Thompson, 2005, 1418 pp.

□ = 10 automóviles por hora.

 μ = 15 automóviles por hora.

Por lo tanto:

$$\rho = \frac{\lambda}{\mu} = \frac{10}{15} = \frac{2}{3}$$

a) Para obtener la probabilidad de que el cajero esté ocioso se determina mediante la siguiente expresión:

$$\pi = 1 - \frac{\lambda}{\mu} = 1 - \frac{10}{15} = 1 - \frac{2}{3} = \frac{1}{3}$$

Por lo tanto la probabilidad de que el cajero estará ocioso será de 1/3, es decir del 0.3333, que expresado en porcentaje es del 33.33% en promedio.

b) Para determinar el número promedio de automóviles que están en la cola del cajero se procede a determinar *Lq*, de la siguiente forma:

$$Lq = \frac{\rho^2}{1 - \rho} = \frac{(2/3)^2}{1 - (2/3)} = \frac{4}{3}$$

Lo que significa que el número promedio de automóviles que están en la cola del cajero y que este no este esperando es de **4/3 clientes**.

c) Para determinar la cantidad promedio de tiempo que un cliente pasa en el estacionamiento del banco, se procede a determinar el valor de W, de la siguiente forma:

$$W = \frac{L}{\lambda} = \frac{\frac{\rho}{1-\rho}}{\lambda} = \frac{\frac{(2/3)}{1-(2/3)}}{10} = \frac{\frac{(2/3)}{(1/3)}}{10} = \frac{2}{10} = \frac{1}{5} = 12$$

Entonces la cantidad promedio de tiempo de que un cliente pasa en el estacionamiento del banco es de **12 minutos** en promedio.

d) Si el cajero estuviera siempre ocupado, atendería un promedio de μ= 15 clientes por hora. Según el inciso a) se sabe que el cajero está ocupado sólo 2/3 partes del tiempo. Por lo tanto, durante cada hora, el cajero atenderá un promedio de: (2/3)*(15) = 10 clientes.

Esto significa que este deber ser el caso porque, en el estado estable, 10 clientes llegan cada hora, de modo que 10 clientes, deben dejar el sistema cada hora.

EJERCICIO 22

Una sucursal de **BBVA Bancomer**; inicia su horario de servicio a partir de las **08:30** horas **A. M.**; para terminar su servicio a las **16:00** horas **P. M.** Suponiendo que el servicio proporcionado por **BBVA Bancomer** tiene una distribución de **Poisson** y este ha determinado tener una tasa de atención de **45** clientes por hora: Determine la probabilidad para atender a **0, 1, 2, clientes**.

SOLUCIÓN DEL EJERCICIO 2

Solución: De acuerdo a la información proporcionada; por la sucursal de BBVA Bancomer; primero se obtiene el valor de λ , cuyo resultado es:

$$\lambda = \frac{45 \text{ clientes}}{60 \text{ minutos}} = 0.75$$

Por lo razón del negocio es de 0.75.

Luego se procede a determinar los valores de probabilidad para X = 0, 1, 2, de la siguiente forma:

² Elaboración propia.

Para P(X = 0):

$$P(X=0) = \frac{\lambda^x * e^{-\lambda}}{x!} = \frac{0.75^0 * e^{-0.75}}{0!} \ 0.47 = 47 \%$$

Para P(X = 1):

$$P(X=1) = \frac{\lambda^x * e^{-\lambda}}{x!} = \frac{0.75^1 * e^{-0.75}}{1!} \ 0.3525 = 35.25 \%$$

Para P(X = 2):

$$P(X=2) = \frac{\lambda^x * e^{-\lambda}}{x!} = \frac{0.75'^2 * e^{-0.75}}{2!} \ 0.1321 = 13.21 \%$$

De acuerdo a los resultados obtenidos por **BBVA Bancomer**, se puede apreciar como conforme el valor de la **variable aleatoria aumenta**; por ende su **probabilidad de ocurrencia disminuye**. Cuando **x es cero** su probabilidad es de **47** %; mientras que para **x igual a uno** su probabilidad es de **35.25** % y finalmente para **x igual a dos** el valor de su probabilidad es de **13.21** %.

Si quisiéramos seguir calculando valores de **X** hasta **45**, veríamos como estos van ir disminuyendo; hasta completar el recorrido de toda la **distribución**, de tal forma que la suma de sus **probabilidades** en forma acumulada nos darán el valor de **1**, lo que implica que deberá cumplir con los axiomas de probabilidad.

EJERCICIO 33

Una oficina aseguradora de **Met-Life**; ofrece a sus clientes el pago de dividendos correspondientes a los seguros de vida de sus clientes, los cuales son pagaderos en forma anual. Suponiendo que el servicio proporcionado por **Met-Life** tiene una **distribución de Poisson** y por ende este ha determinado tener una tasa de atención de **60 pagos de dividendos**, por hora. Determine la probabilidad para atender a sus clientes en:

- a) Medio minuto o menos.
- **b)** Un minuto o menos.
- c) Dos minutos o menos.

SOLUCIÓN DEL EJERCICIO 3

Solución: De acuerdo a la información proporcionada por **Met-Life**; primero se obtiene el valor de μ , cuyo resultado es:

$$\mu = \frac{60 \text{ clientes}}{60 \text{ minutos}} = 1$$

Por lo razón del negocio es de 1 cliente por minuto.

³ Elaboración propia

Luego se procede a determinar los valores de probabilidad para los incisos a), b) y c) de la siguiente forma:

Para P(Medio minuto o menos):

$$P(tiempo\ de\ servicio \le 0.5) = 1 - e^{-\mu t} = 1 - e^{-1*0.5} = 0.3935 = 39.35\%$$

Para P(Un minuto o menos):

$$P(tiempo\ de\ servicio \le 1) = 1 - e^{-\mu t} = 1 - e^{-1*1} = 0.6321 = 63.21\%$$

Para P(Dos minutos o menos):

$$P(tiempo\ de\ servicio \le 2) = 1 - e^{-\mu t} = 1 - e^{-1 \cdot 2} = 0.8646 = 86.46 \%$$

De acuerdo a los resultados obtenidos se puede apreciar como conforme el valor de la variable aleatoria aumenta; por ende su probabilidad de ocurrencia aumenta. Cuando x es medio minuto o menos su probabilidad es de 39.35 %; mientras que para x un minuto o menos su probabilidad es de 63.21 % y finalmente para x igual a dos minutos o menos el valor de su probabilidad es de 86.46 %.