

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

DE MEXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN

INVESTIGACIÓN DE OPERACIONES

EJERCICIOS DE MÉTODO DE TRANSPORTE y REDES

從

Materia: Matemáticas VI

Ciudad Universitaria a 18 de febrero del 2014

Método de Transporte y Redes.

CONTENIDO

METODO DE TRANSPORTE Y REDES

Figercicio 1	3
☞ Solución del Ejercicio 1	4
☞ Ejercicio 2	16
Solución del Ejercicio 2	17
☞ Ejercicio 3	35

Solucion dei Ejercicio 3	3/
© Ejercicio 4	52
Solución del Ejercicio 4	53

EJERCICIO 1¹

Se fabrica un producto en tres plantas y se envía a tres almacenes cuyos costos se muestran en la siguiente tabla:

Almacenes Plantas	W1	W2	W3	CAPACIDAD DISPONIBLE
P1	20	16	24	300
P2	10	10	8	500
P3	12	18	10	100
Demanda	200	400	300	900

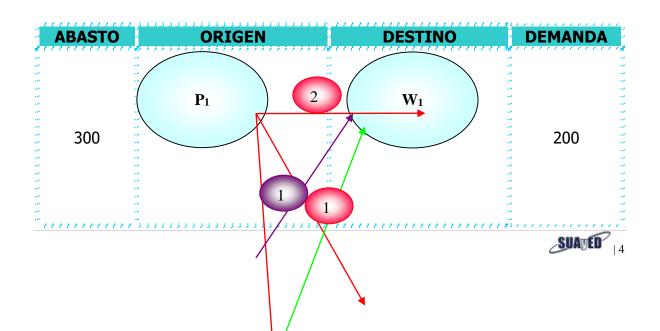
¹ Problema propuesto extraído de David R. Anderson, Dennos J. Sweeney, Tomhas A. Williams. Introducción a los Modelos Cuantitativos para Administración; Grupo Editorial Iberoamérica S. A. de C. V., México, 1996. Problema Propuesto 2. Capítulo 8. Pág. 323.

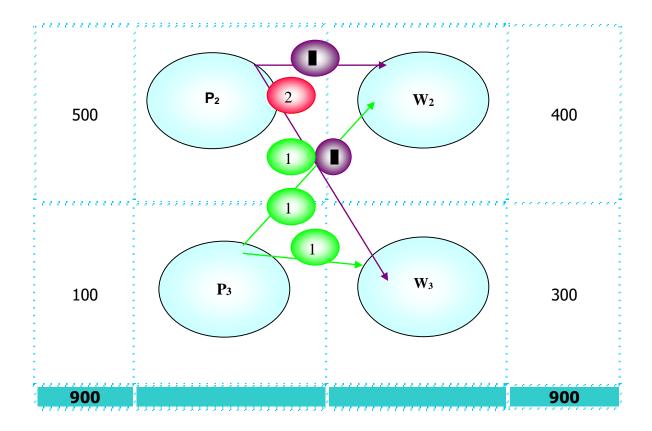
Determinar:

- a) Una representación de la red para el problema.
- b) Utilizando el "Método de Transporte" para minimizar los costos de transporte, determinar la solución óptima de costo mínimo; para esta "Red" en cuestión.
- c) Suponiendo que los elementos de la tabla anterior representan **utilidades**, por **unidad al fabricar en la planta i y vender en el almacén j** ¿De qué manera se modifica el **planteamiento del problema** con respecto al **inciso b**?

SOLUCIÓN DEL EJERCICIO 1

a) En forma esquemática una representación de la red correspondiente para este caso es la siguiente:





b) Para poder establecer el Modelo de Programación Lineal aplicando el "Método de Transporte"; correspondiente; se hará mediante el arreglo matricial presentado en la explicación del ejercicio, sólo añadiéndole la Solución Inicial, utilizando como técnica el "Método del Costo Mínimo", y posteriormente proceder a verificar si esta solución es la óptima o en consecuencia buscar una segunda solución que sea la óptima y si no, seguir realizando iteraciones, resultando lo siguiente:

DESTINO ORIGEN		W1		W2		W3	ABASTO
P1	20 100		16 200		24		300
P2	10		10 200		8 300		500

	12	18	10	
P3	100			100
DEMANDA	200	400	300	900

Por lo tanto, la **"Solución Inicial"**, utilizando el **"Método del Costo Mínimo"** es:

•
$$(20x100) + (16x200) + (10x200) + (8x300) + (12x100) = 10,800$$

Ahora se procede a verificar si esta **"Solución Inicial"** es la óptima; en caso contrario se procede a buscar una segunda **"Solución Óptima"**, la cual partirá de la **"Solución Inicial"**.

Para, verificar si la **"Solución Inicial"** es óptima; se procede evaluar los coeficientes de los **"Costos Modificados"** correspondientes a la **"Solución Inicial"**; a la que posteriormente se le restaran los **"Costos Originales"**, donde cuyos resultados deberán ser **ceros** o **valores negativos**. Esto es:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo más casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:

			b
20	16	14	6
14	10	8	0
12	8	6	-2
14	10	8	

Una vez obtenidos los "Costos Modificados" correspondientes a la "Solución **Inicial**" se procede a restarles los "Costos Originales", en donde los resultados obtenidos para los "Costos Totales", deberán ser ceros o valores negativos. Resultando o siguiente:

20	16	14		20	16	24		0	0	-10
14	10	8	_	10	10	8	=	4	0	0
12	8	6		12	18	10		0	-10	-4

De los "Costos Totales" obtenidos; se puede apreciar que en uno de ellos no se cumple la regla de obtener valores ceros o negativos que es el correspondiente a la celdilla marcado en rojo cuyo resultado es positivo, y por ende se procede a obtene una nueva iteración, a fin de obtener una nueva "Solución Óptima".

De la siguiente forma:

Tomando como referencia a la celdilla cuyo valor final resultante fue positivo se procede a compensar y descompensar las adyacentes a fin de modificar la "Solución Inicial". Para este caso las celdillas involucradasque permiten generar una nueva solución son las siguientes:

300

100 - 200 +

		500
+	200 -	200
100	400	
]
100-100	200+100	300
100	200 -100	200
100	400	
		1
	300	300
100	100 -	200
100	400	

Una vez hecha la compensación y descompensación la nueva "Solución Óptima" es la que se muestra en la siguiente "Matriz":

DESTINO ORIGEN	W1	W2	W3	ABASTO
P1	20	16 300	24	300
P2	10 100	10 100	300	500
P3	12 100	18	10	100
DEMANDA	200	400	300	900

Por lo tanto, la nueva **"Solución Óptima"**, genera un **"Costo Mínimo"** de:

•
$$(16x300) + (10x100) + (10x100) + (8x300) + (12x100) = 10,400$$

Ahora se procede a verificar si esta nueva **"Solución"** es la óptima; en caso contrario se procede a buscar una tercer **"Solución Óptima"**, la cual partirá de la primera **"Iteración"**.

Para, verificar si la nueva **"Solución"** es óptima; se procede evaluar de la misma forma que se hizo en la **"Solución Inicial"**; resultando lo siguiente:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:

			b	
	16	16	14	6
	10	10	8	0
	12	12	10	2
	10	10	8	
į	a			

Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos.

Resultando o siguiente:

16	16	14		20	16	24		-4	0	-10
10	10	8	_	10	10	8	=	0	0	0
12	12	10		12	18	10		0	-6	0

De los **"Costos Totales"** obtenidos; se puede apreciar que ahora si cada uno de ellos cumple la regla de obtener valores ceros o negativos, por lo tanto se ha determinado el **"Costo Mínimo"** y por ende los **"Itinerarios"** que se deberán seguir para poder obtenerlo.

Por lo tanto, el **"Costo Total Mínimo"** obtenido es de **10,400 unidades monetarias**; los cuales se distribuyen de la siguiente forma:

COSTO MÍNIMO:

• UNIDADES QUE SE ENVÍAN A CADA RUTA

ORIGEN	DESTINO	COSTO	UNIDADES
P1	W2	16	300
P2	W1	10	200
P2	W2	10	100
P2	W3	8	200
Р3	W1	12	100

c) Para poder establecer el **Modelo de Programación Lineal** aplicando el **"Método de Transporte"**; correspondiente; a la siguiente suposición:

Que ahora los elementos de la tabla anterior representan utilidades, por unidad al fabricar en la planta i y vender en el almacén j.

La suposición anterior indica que ahora lo que se va a obtener es la "Maximización de las Utilidades".

Por consiguiente, para poder obtenerlas se hará de la misma forma que se hizo para "Minimizar"; es decir, mediante el arreglo matricial presentado el cual se modificará de acuerdo al que se tiene como base en la explicación del ejercicio.

En este arreglo matricial, las modificaciones se dan de la siguiente manera:

Los orígenes se vuelven destinos y los destinos se vuelven orígenes, en otras palabras las plantas ahora buscan obtener la "Máxima Utilidad" esperada, mientras que los almácenes buscan obtener el "Costo Mínimo".

Por lo tanto los "Costos Unitarios" siguen siendo "Costos" para los almácenes; mientras para las plantas, ahora se vuelven "Utilidades Unitarias".

Por lo tanto el modelo modificado queda de la siguiente manera:

DESTINO ORIGEN	P1	P2	P3	ABASTO
	20	10	12	
W1	100		100	200
	16	10	18	
W2	200	200		400
	24	8	10	
W3		300		300
				900
DEMANDA	300	500	100	
				900

Para poder obtener la "**Utilidad Máxima**" esperada por las plantas, se procederá, a determinar el "**Costo Mínimo**" de los almacenes, siguiendo la misma metodología, que se desarrolló en el inciso b).

De la siguiente forma:

Se obtendrá la **"Solución Inicial"**, para obtener el **"Costo Mínimo"** de los almacénes, lo que significará que se está obteniendo las **"Utilidad Máxima"**; de las plantas; utilizando el **"Método del Costo Mínimo"** es:

Por lo tanto, la **"Solución Inicial"**, utilizando el **"Método del Costo Mínimo"** es:

•
$$(20x100) + (12x100) + (16x200) + (10x200) + (8x300) = 10,800$$

Ahora se procede a verificar si esta **"Solución Inicial"** es la óptima; en caso contrario se procede a buscar una segunda **"Solución Óptima"**, la cual partira de la **"Solución Inicial"**.

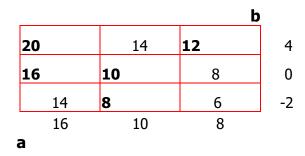
Para, verificar si la **"Solución Inicial"** es óptima; se procede evaluar los coeficientes de los **"Costos Modificados"** correspondientes a la **"Solución Inicial"**; a la que posteriormente se le restaran los **"Costos Originales"**, donde cuyos resultados deberán ser **ceros** o **valores negativos**. Esto es:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:



Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos.

Resultando o siguiente:

20	14	12		20	10	12		0	4	0
16	10	8	-	16	10	18	=	0	0	-10
14	8	6		24	8	10		-10	0	-4

De los **"Costos Totales"** obtenidos; se puede apreciar que en uno de ellos no se cumple la regla de obtener valores ceros o negativos que es el correspondiente a las celdillas marcadas en rojo cuyo resultado es positivo.

Por ende se procede a obtene una nueva iteración, a fin de obtener una nueva **"Solución Óptima"**.

De la siguiente forma:

Tomando como referencia a las celdillas cuyo valor final resultante fue positivo se procede a compensar y descompensar las adyacentes a fin de modificar la **"Solución Inicial"**. Para este caso las celdillas involucradas que permiten generar una nueva solución son las siguientes:

100	-	-	ŀ	100
200	+	200	-	400
300		200		
100	100	_		400
100	- 100	1	00	100
200+	-100	200	-100	400
300		200		
				ı
		100		100
300		100		400
300		200		

Una vez hecha la compensación y descompensación la nueva "Solución Óptima" es la que se muestra en la siguiente "Matriz":

DESTINO ORIGEN	P1			P2		P3	ABASTO
W1	20		10 100		12 100		300
W2	16 300		10 100		18		500

	24	8	10	
W3		300		100
DEMANDA	200	400	300	900

Por lo tanto, la nueva "Solución Óptima", genera un "Costo Mínimo" de:

•
$$(10x100) + (16x300) + (10x100) + (12x100) + (8x300) = 10,400$$

Ahora se procede a verificar si esta nueva **"Solución"** es la óptima; en caso contrario se procede a buscar una tercer **"Solución Óptima"**, la cual partirá de la primera **"Iteración"**.

Para, verificar si la nueva **"Solución"** es óptima; se procede evaluar de la misma forma que se hizo en la **"Solución Inicial"**; resultando lo siguiente:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:

			b	
	16	10	12	0
	16	10	12	0
	14	8	10	-2
	16	10	12	
į	a			

Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos.

Resultando o siguiente:

16	10	12		20	10	12		-4	0	0
16	10	12	_	16	10	18	=	0	0	-6
14	8	10		24	8	10		-10	0	0

De los "Costos Totales" obtenidos; se puede apreciar que ahora si cada uno de ellos cumple la regla de obtener valores ceros o negativos, por lo tanto se ha determinado el "Costo Mínimo" y por ende los "Itinerarios" que se deberán seguir para poder obtenerlo.

Por lo tanto, el **"Costo Total Mínimo"** obtenido es de **10,00 unidades monetarias**; los cuales se distribuyen de la siguiente forma:

COSTO MÍNIMO:

$$10X100 + 16X300 + 10X100 + 12X100 + 8X300 = 10,400 costo mínimo$$

• UNIDADES QUE SE ENVÍAN A CADA RUTA

ORIGEN	DESTINO	COSTO	UNIDADES
W1	P2	10	100
W1	P3	12	100
W2	P1	16	300
W2	P2	10	100
W3	P2	8	300

Conclusiones del Problema: En este problema se pudo apreciar que el resultado obtenido en el inciso b, fue exactamente el mismo que se obtuvo en el inciso c; lo que significa que conque se hubiera resuelto de una sola forma, se sabe que lo que se pretende obtener es simpre el "Costo Mínimo", por parte de los orígenes, y este "Costo Mínimo" por ende se considerára como la "Utilidad Máxima" para los destinos.

EJERCICIO 22

Considérese la siguiente información con respecto al problema de transporte:

Destino Origen	Boston	Atlanta	Houston	ABASTO
Detroit	5	2	3	100
St. Louis	8	4	3	300
Denver	9	7	5	300
Demanda	300	200	200	

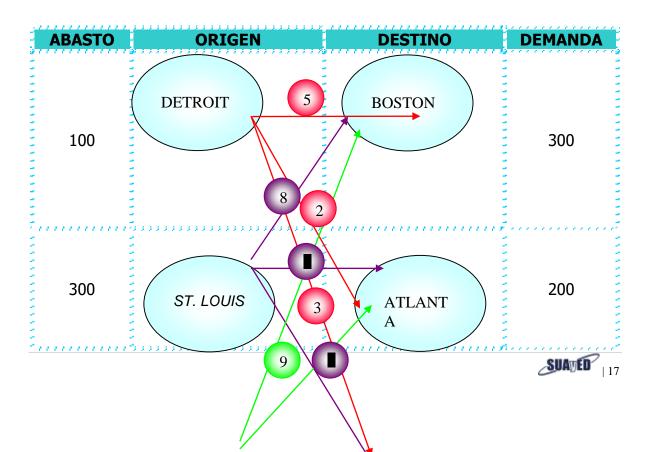
- a) Elabore una representación de red para este problema.
- **b)** Utilizando el "**Método de Transporte**", determine: ¿Cuál es la solución de **costo mínim**o?, ¿cuántas unidades se envían en cada ruta de transporte?.

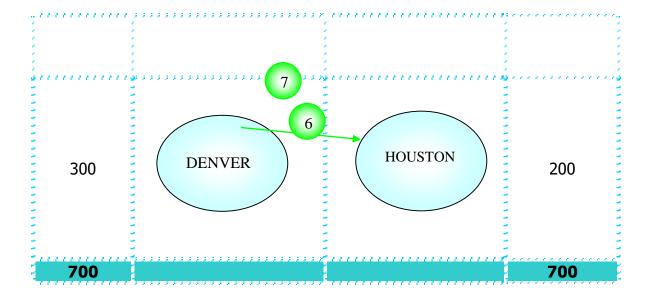
² Problema propuesto extraído de David R. Anderson, Dennos J. Sweeney, Tomhas A. Williams. Introducción a los Modelos Cuantitativos para Administración; Grupo Editorial Iberoamérica S. A. de C. V., México, 1996. Problema Propuesto 3. Capítulo 8. Pág. 323.

- c) Supóngase que existe un requerimiento de enviar **100 unidades** en la ruta **Detroit Boston**. ¿De qué manera se tendría que modificar el modelo de programación lineal para reflejar este cambio?.
- **d)** Supóngase que una controversia laboral elimina temporalmente las rutas **Denver Boston** y **San Luis Atlanta**. ¿De qué modo se tienen que reflejar estos cambios al modificar el modelo.
- e) Obtenga el costo mínimo para ambos casos y establezca conclusiones.

SOLUCIÓN DEL EJERCICIO 2

a) En forma esquemática una representación de la red correspondiente para este caso es la siguiente:





b) Para poder establecer el Modelo de Programación Lineal aplicando el "Método de Transporte"; correspondiente; se hará mediante el arreglo matricial presentado en la explicación del ejercicio, sólo añadiéndole la Solución Inicial, utilizando como técnica el "Método del Costo Mínimo".

Posteriormente proceder a verificar si esta solución es la óptima o en consecuencia buscar una segunda solución que sea la óptima y si no, seguir realizando iteraciones, resultando lo siguiente:

DESTINO ORIGEN	BOSTON		АТ	2 100		DUSTON	ABASTO 100	
DETROIT	5							
ST. LOUIS	8		4 100		3 200		300	

	9	7	5	
DENVER	300			300
DEMANDA	300	200	200	700

Como se podrá apreciar; al aplicar la **"Técnica del Costo Mínimo"** para obtener la **"Solución Inicial"**; esta da como resultado una **"Solución Inicial Degenerada"**, ya que se obtiene una solución que tiene una celdilla menos.

Por consiguiente se creará una **celdilla artificial con flujo cero**, para este caso supóngase que la celdilla artificial será la ruta **"St. Louis-Boston"** con un **"Costo Unitario"** de **8**.

Entonces la "Solución Inicial Degenerada" se convierte en:

DESTINO ORIGEN	ВС	BOSTON		ATLANTA		HOUSTON		BASTO
DETROIT	5		2 100		3			100
ST. LOUIS	0		4 100		200		300	
DENVER	9 300		7		5			300
DEMANDA		300		200		200	700	700

Por lo tanto, la "Solución Inicial", utilizando el "Método del Costo Mínimo" es:

•
$$(2x100) + (8x0) + (4x100) + (3x200) + (9x300) = 3,900$$

Ahora se procede a verificar si esta **"Solución Inicial"** es la óptima; en caso contrario se procede a buscar una segunda **"Solución Óptima"**, la cual partira de la **"Solución Inicial"**.

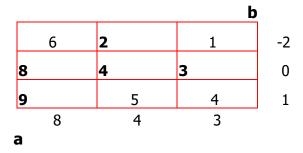
Para, verificar si la **"Solución Inicial"** es óptima; se procede evaluar los coeficientes de los **"Costos Modificados"** correspondientes a la **"Solución Inicial"**; a la que posteriormente se le restaran los **"Costos Originales"**, donde cuyos resultados deberán ser **ceros** o **valores negativos**. Esto es:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:



Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos.

Resultando o siguiente:

6	2	1		5	2	3		1	0	-2
8	4	3	_	8	4	3	=	0	0	0
9	5	4		9	7	5		0	-2	-1

De los **"Costos Totales"** obtenidos; se puede apreciar que en uno de ellos no se cumplie la regla de obtener valores ceros o negativos que es el correspondiente a la celdilla marcado en rojo cuyo resultado es positivo.

Por ende se procede a obtene una nueva iteración, a fin de obtener una nueva **"Solución Óptima"**.

De la siguiente forma:

Tomando como referencia a la celdilla cuyo valor final resultante fue positivo se procede a compensar y descompensar las adyacentes a fin de modificar la **"Solución Inicial"**.

Para este caso las celdillas involucradasque permiten generar una nueva solución son las siguientes:

+	100 - 0	100
0 - 0	100 + 0	100
0	200	
		1
0	100 - 0	100
0 - 0	100 + 0	100
0	200	
		•
0	100	100
0	100 100 -	100 100

Una vez hecha la compensación y descompensación la nueva **"Solución Óptima"** es la que se muestra en la siguiente **"Matriz"**:

DESTINO ORIGEN	BOSTON	ATLANTA	HOUSTON	ABASTO
DETROIT	5 0	100	3	100
ST. LOUIS	8	100	3 200	300
DENVER	9 300	7	5	300
DEMANDA	300	200	200	700

Por lo tanto, la nueva **"Solución Óptima"**, genera un **"Costo Mínimo"** de:

•
$$(5x0) + (2x100) + (4x100) + (3x200) + (9x300) = 3,900$$

Ahora se procede a verificar si esta nueva **"Solución"** es la óptima; en caso contrario se procede a buscar una tercer **"Solución Óptima"**, la cual partirá de la primera **"Iteración"**.

Para, verificar si la nueva **"Solución"** es óptima; se procede evaluar de la misma forma que se hizo en la **"Solución Inicial"**.

Resultando lo siguiente:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:

				<u> </u>
	5	2	1	-2
	7	4	3	0
	9	6	5	2
	7	4	3	_
į	а			

Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos.

Resultando:

5	2	1		5	2	3		0	0	-2
7	4	3	_	8	4	3	=	-1	0	0
9	6	5		9	7	5		0	-1	0

De los **"Costos Totales"** obtenidos; se puede apreciar que ahora si cada uno de ellos cumple la regla de obtener valores ceros o negativos.

Por lo tanto se ha determinado el **"Costo Mínimo"** y por ende los **"Itinerarios"** que se deberán seguir para poder obtenerlo.

Por lo tanto, el **"Costo Total Mínimo"** obtenido es de **3,900 unidades monetarias**; los cuales se distribuyen de la siguiente forma:

COSTO MÍNIMO:

$$5X0 + 2X100 + 4X100 + 3X200 + 9X300 = 3,900 costo mínimo$$

• UNIDADES QUE SE ENVÍAN A CADA RUTA

ORIGEN	DESTINO	COSTO	UNIDADES
DETROIT	BOSTON	5	0
DETROIT	ATLANTA	2	100
St. LOUIS	ATLANTA	4	100
St. LOUIS	HOUSTON	3	200
DENVER	BOSTON	9	300

c) y e)

Supóngase que existe un requerimiento de enviar **100** unidades en la ruta **Detroit – Boston**. ¿De qué manera se tendría que modificar el modelo de programación lineal para reflejar este cambio?.

Considerando el supuesto anterior, entonces el modelo sufriría las siguientes modificaciones, cuya **"Solución Inicial"** sería la siguiente:

DESTINO ORIGEN	Е	OSTON	A	TLANTA	Н	OUSTON	ABASTO
	5		2		3		
DETROIT	100						100
	8		4		3		
St. LOUIS	100		200				300
DENVER	9		7		5		

	100		200	300
DEMANDA	300	200	200	700
				700

Por lo tanto, la "Solución Inicial", utilizando el "Método del Costo Mínimo" es:

•
$$(5x100) + (8x100) + (4x200) + (9x100) + (5x200) = 3,900$$

Ahora se procede a verificar si esta **"Solución Inicial"** es la óptima; en caso contrario se procede a buscar una segunda **"Solución Óptima"**, la cual partira de la **"Solución Inicial"**.

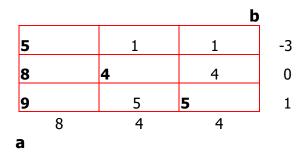
Para, verificar si la **"Solución Inicial"** es óptima; se procede evaluar los coeficientes de los **"Costos Modificados"** correspondientes a la **"Solución Inicial"**; a la que posteriormente se le restaran los **"Costos Originales"**, donde cuyos resultados deberán ser **ceros** o **valores negativos**. Esto es:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:



Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos.

Resultando o siguiente:

5	1	1		5	2	3		0	-1	-2
8	4	4	_	8	4	3	=	0	0	1
9	5	5		9	7	5		0	-2	0

De los **"Costos Totales"** obtenidos; se puede apreciar que en uno de ellos no se cumplie la regla de obtener valores ceros o negativos que es el correspondiente a la celdilla marcado en rojo cuyo resultado es positivo.

Por ende se procede a obtene una nueva iteración, a fin de obtener una nueva "Solución Óptima".

De la siguiente forma:

Tomando como referencia a la celdilla cuyo valor final resultante fue positivo se procede a compensar y descompensar las adyacentes a fin de modificar la **"Solución Inicial"**. Para este caso las celdillas involucradasque permiten generar una nueva solución son las siguientes:

100	-		+		100
100	+	200	-	3	300
200		200			
		ı		ı	
100 –1	L00	1	00		100
100 +	100	200	-100		300
200		200		•	
				:	100
200		200			100 300
200 0		200 100			

Una vez hecha la compensación y descompensación la nueva "Solución Óptima" es la que se muestra en la siguiente "Matriz":

DESTINO ORIGEN	BOSTON	ATLANTA	HOUSTON	ABASTO
DETROIT	5 100	2	3	100
ST. LOUIS	8	200	3 100	300
DEN (ED	9	7	5	
DENVER	200		100	300
DEMANDA	300	200	200	700

Por lo tanto, la nueva **"Solución Óptima"**, genera un **"Costo Mínimo"** de:

•
$$(5x100) + (4x200) + (3x100) + (9x200) + (6x100) = 3,900$$

Ahora se procede a verificar si esta nueva **"Solución"** es la óptima; en caso contrario se procede a buscar una tercer **"Solución Óptima"**, la cual partirá de la primera **"Iteración"**.

Para, verificar si la nueva **"Solución"** es óptima; se procede evaluar de la misma forma que se hizo en la **"Solución Inicial"**.

Resultando lo siguiente:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:

					b	
	5	2		1		-2
	7	4	3			0
	9	6	5			2
	7	4	1	3		
į	a					

Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos.

Resultando:

Ţ	5	2	1		5	2	3		0	0	-2
	7	4	3	-	8	4	3	=	-1	0	0
Ç	9	6	5		9	7	5		0	-1	0

De los **"Costos Totales"** obtenidos; se puede apreciar que ahora si cada uno de ellos cumple la regla de obtener valores ceros o negativos.

Por lo tanto se ha determinado el **"Costo Mínimo"** y por ende los **"Itinerarios"** que se deberán seguir para poder obtenerlo.

Por lo tanto, el **"Costo Total Mínimo"** obtenido es de **3,900 unidades monetarias**; los cuales se distribuyen de la siguiente forma:

COSTO MÍNIMO:

$$5X100 + 4X200 + 3X100 + 9X200 + 6X100 = 3,900$$
 costo mínimo

• UNIDADES QUE SE ENVÍAN A CADA RUTA

ORIGEN	DESTINO	COSTO	UNIDADES
DETROIT	BOSTON	5	100
St. LOUIS	ATLANTA	4	200
St. LOUIS	HOUSTON	3	100
DENVER	BOSTON	9	200
DENVER	HOUSTON	5	100

d) y e)

Supóngase que una controversia laboral elimina temporalmente las rutas **Denver – Boston** y **San Luis – Atlanta**. ¿De qué modo se tienen que reflejar estos cambios al modificar el modelo?.

Considerando el supuesto anterior, entonces el modelo sufriría las siguientes modificaciones, cuya **"Solución Inicial"** sería la siguiente:

DESTINO ORIGEN	В	SOSTON	А	TLANTA	Н	DUSTON	ABASTO
DETROIT	5		2		3 100		100
St. LOUIS	8 300		4		3		300

DENVER	9	7 200	5 100	300
DEMANDA	300	200	200	700

Como se podrá apreciar; al aplicar la **"Técnica del Costo Mínimo"** para obtener la **"Solución Inicial"**; esta da como resultado una **"Solución Inicial Degenerada"**, ya que se obtiene una solución que tiene una celdilla menos.

Por consiguiente se creará una **celdilla artificial con flujo cero**, para este caso supóngase que la celdilla artificial será la ruta **"Denver-Boston"** con un **"Costo Unitario"** de **9**.

Entonces la **"Solución Inicial Degenerada"** se convierte en:

DESTINO ORIGEN	BOSTON	ATLANTA	HOUSTON	ABASTO
DETROIT	5	2	3 100	100
ST. LOUIS	300	4	3	300
	9	7	5	
DENVER	0	200	100	300
DEMANDA	300	200	200	700

		700

Por lo tanto, la "Solución Inicial", utilizando el "Método del Costo Mínimo" es:

•
$$(3x100) + (8x300) + (9x0) + (7x200) + (5x100) = 4,600$$

Ahora se procede a verificar si esta **"Solución Inicial"** es la óptima; en caso contrario se procede a buscar una segunda **"Solución Óptima"**, la cual partira de la **"Solución Inicial"**.

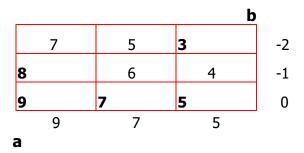
Para, verificar si la **"Solución Inicial"** es óptima; se procede evaluar los coeficientes de los **"Costos Modificados"** correspondientes a la **"Solución Inicial"**; a la que posteriormente se le restaran los **"Costos Originales"**, donde cuyos resultados deberán ser **ceros** o **valores negativos**. Esto es:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:



Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos.

Resultando o siguiente:

7	5	3		5	2	3		2	3	0
8	6	4	_	8	4	3	=	0	2	1
9	7	5		9	7	5		0	0	0

De los **"Costos Totales"** obtenidos; se puede apreciar que en cuatro de ellos no se cumplie la regla de obtener valores ceros o negativos que es el correspondiente a la celdilla marcado en rojo cuyo resultado es positivo.

Por ende se procede a obtene una nueva iteración, a fin de obtener una nueva **"Solución Óptima"**.

De la siguiente forma:

Tomando como referencia a la celdilla cuyo valor final resultante fue positivo se y no se involucre en las rutas afectadas, se procede a compensar y descompensar las adyacentes a fin de modificar la **"Solución Inicial"**. Para este caso las celdillas involucradasque permiten generar una nueva solución son las siguientes:

300) –		+	30	0
0	+	100	-	10	0
300		100			
		I		1	
300	0 –100	1	00	30	0
0	+100	100	-100	10	0
300		100			
300		100			
300		100		1	
200		100		30	0
	0	Ī		30 10	
200	0	Ī			

Una vez hecha la compensación y descompensación la nueva "Solución Óptima" es la que se muestra en la siguiente "Matriz":

DESTINO ORIGEN	BOSTON	ATLANTA	HOUSTON	ABASTO
DETROIT	5	2	3 100	100
ST. LOUIS	200	4	3 100	300
DEN (ED	9	7	5	
DENVER	100	200		300
DEMANDA	300	200	200	700

Por lo tanto, la nueva "Solución Óptima", genera un "Costo Mínimo" de:

• (3x100) + (8x200) + (3x100) + (9x100) + (7x200) = 4,300 Ahora se procede a verificar si esta nueva "Solución" es la óptima; en caso contrario se procede a buscar una tercer "Solución Óptima", la cual partirá de la primera "Iteración".

Para, verificar si la nueva **"Solución"** es óptima; se procede evaluar de la misma forma que se hizo en la **"Solución Inicial"**.

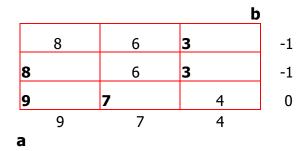
Resultando lo siguiente:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:



Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos.

Resultando:

8	6	3		5	2	3		3	4	0
8	6	3	_	8	4	3	=	0	2	0
9	7	4		9	7	5		0	0	-1

De los **"Costos Totales"** obtenidos; se puede apreciar que una de las celdillas no cumple con la regla; pero ya no podemos seguir haciendo iteraciones debido a que esta celdilla a la hora de descompensar y compensar no embona con ninguna combinación fuera de las rutas afectadas, por consiguiente no se puede ya mejorar más la solución, de lo que se ha mejorado.

Por lo tanto se ha determinado el **"Costo Mínimo"** y por ende los **"Itinerarios"** que se deberán seguir para poder obtenerlo. El **"Costo Total Mínimo"** obtenido es de **3,900 unidades monetarias;** los cuales se distribuyen de la siguiente forma:

COSTO MÍNIMO:

$$3X100 + 8X200 + 3X100 + 9X100 + 7X200 = 4,300$$
 costo mínimo

• UNIDADES QUE SE ENVÍAN A CADA RUTA

ORIGEN	DESTINO	COSTO	UNIDADES
DETROIT	HOUSTON	3	100
St. LOUIS	BOSTON	8	200
St. LOUIS	HOUSTON	3	100
DENVER	BOSTON	9	100
DENVER	ATLANTA	7	200

e) Conclusiones:

Se puede establecer, que cuando las condiciones de un "Problema" de Transporte, que las empresas suelen enfrentar, presenta las condiciones necesarias y suficientes para poder establecer que las cantidades que salen de los orígenes son igual alas cantidades que llegan a los destinos. Puede llegar a tener una "Solución Óptima" que mimimice el "Costo Total". Tal es el caso de los inciso a, b.

Pero cuando existen casos ajenos a estas condiciones, entonces se procede a reducir el "Costo" lo que más se pueda, aunque no se llegue a la "Solución Óptima", debido a esos impoderables. Tal es el caso del inciso d.

EJERCICIO 3³

Una firma de generadores fabrica un producto de esta clase desde tres plantas hasta cuatro centros de distribución. Dicha compañía tiene operaciones de producción en **Cleveland Ohío, Bedford Indiana**, y en **York Pensilvania**.

Las **capacidades de producción** en estas **tres plantas** para el siguiente periodo de **planeación** de **tres meses** y un tipo específico de **generadores** son los siguientes:

CIUDADES	CAPACIDAD
Cleveland	5000 unidades
Bedford	6000 unidades
York	2500 unidades

La empresa distribuye sus generadores a través de los cuatro centros de distribución ubicados en **Boston Massachussets**, **Chicago Illinois**, **San Luis Missouri**, y **Lexington Kentucky**, cuyo pronóstico de demanda es el siguiente:

CIUDADES	DEMANDA
	PRONOSTICADA
Boston	6000
Chicago	4000
San Luis	2000
Lexington	1500

³ Problema resuelto extraído de David R. Anderson, Dennos J. Sweeney, Tomhas A. Williams. Introducción a los Modelos Cuantitativos para Administración; Grupo Editorial Iberoamérica S. A. de C. V., México, 1996. Problema Capítulo 8. Pág. 300 - 323.

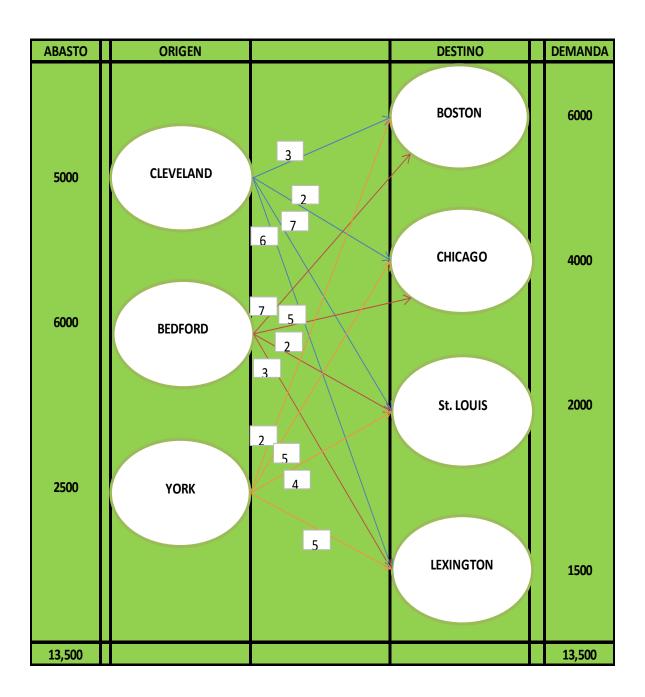
Por su parte los **"Costos Unitarios"** de cada una de las **rutas**, se muestran en el cuadro siguiente:

DESTINO ORIGEN	BOSTON	CHICAGO	SAN LUIS	LEXINGTON
CLEVELAND	3	2	7	6
BEDFORD	7	5	2	3
YORK	2	5	4	5

- a) Elabore una representación de **red** para este **problema**.
- **b)** Determine la **solución óptima** al elaborar un modelo de **programación lineal de transporte**.
- c) Cuantas unidades se envían en cada ruta de transporte utilizada.
- d) Supóngase que se quiere variar la demanda y esta resulta mayor **100** unidades más. ¿Cómo podría usted modificar dicho problema?.
- e) Establezca sus conclusiones.

SOLUCIÓN DEL EJERCICIO 3

a) En forma esquemática una representación de la red correspondiente para este caso es la siguiente:



b) Para poder establecer el Modelo de Programación Lineal aplicando el "Método de Transporte"; correspondiente; se hará mediante el arreglo matricial presentado en la explicación del ejercicio, sólo añadiéndole la "Solución Inicial", utilizando como técnica el "Método del Costo Mínimo".

Posteriormente proceder a verificar si esta solución es la óptima o en consecuencia buscar una segunda solución que sea la óptima y si no, seguir realizando iteraciones, resultando lo siguiente:

DESTINO	ВО	STON	СН	ICAGO	SAI	N LUIS	LEX	INGTON	ABASTO
ORIGEN									
	3		2		7		6		
CLEVELAND	100	00	400	00					5000
	7		5		2		3		
BEDFORD	2500		500		2000		1500		6000
	2		5		4		5		
YORK	250	0							2500
DEMANDA	6	5000	2	1000	2	2000	[1500	13500 13500

Por lo tanto, la "Solución Inicial", utilizando el "Método del Costo Mínimo" es:

•
$$(3x1000) + (2x4000) + (7x2500) + (2x2000) + (3x1500) + (2X2500) = 42,000$$

Ahora se procede a verificar si esta **"Solución Inicial"** es la óptima; en caso contrario se procede a buscar una segunda **"Solución Óptima"**, la cual partira de la **"Solución Inicial"**.

Para, verificar si la **"Solución Inicial"** es óptima; se procede evaluar los coeficientes de los **"Costos Modificados"** correspondientes a la **"Solución Inicial"**; a la que posteriormente se le restaran los **"Costos Originales"**, donde cuyos resultados deberán ser **ceros** o **valores negativos**. Esto es:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:

			b	
3	2	-2	-1	-4
7	6	2	3	0
2	-1	-3	-2	-5
7	6	2	3	•

a

Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos.

Resultando o siguiente:

3	2	-2	-1		3	2	7	6		0	0	-9	-7
7	6	2	3	-	7	5	2	3	=	0	1	0	0
2	-1	-3	-2		2	5	4	5		0	-6	-7	-7

De los **"Costos Totales"** obtenidos; se puede apreciar que en uno de ellos no se cumplie la regla de obtener valores ceros o negativos que es el correspondiente a la celdilla marcado en rojo cuyo resultado es positivo.

Por ende se procede a obtene una nueva iteración, a fin de obtener una nueva "Solución Óptima".

De la siguiente forma:

Tomando como referencia a la celdilla cuyo valor final resultante fue positivo se procede a compensar y descompensar las adyacentes a fin de modificar la **"Solución Inicial"**.

Para este caso las celdillas involucradasque permiten generar una nueva solución son las siguientes:

1000	+	4000 -	5000
2500	-	+	2500
3500		4000	_

1000 + 2500	4000 - 2500	5000
2500 - 2500	2500	2500
3500	4000	

3500	1500	5000
	2500	2500
3500	4000	

Una vez hecha la compensación y descompensación la nueva **"Solución Óptima"** es la que se muestra en la siguiente **"Matriz"**:

DESTINO ORIGEN	ВО	STON	СН	ICAGO	SAI	N LUIS	LEX	INGTON	ABASTO
	3		2		7		6		
CLEVELAND	350	00	150	00					5000
	7		5		2		3		
BEDFORD				2500		2000		00	6000
	2		5		4		5		
YORK	2500								2500
DEMANDA		.000		1000				1 500	13500
DEMANDA	6	000		1000	2	2000		1500	13500

Por lo tanto, la nueva "Solución Óptima", genera un "Costo Mínimo" de:

Ahora se procede a verificar si esta nueva **"Solución"** es la óptima; en caso contrario se procede a buscar una tercer **"Solución Óptima"**, la cual partirá de la primera **"Iteración"**.

Para, verificar si la nueva **"Solución"** es óptima; se procede evaluar de la misma forma que se hizo en la **"Solución Inicial"**.

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:

			b	i
3	2	-1	0	-3
6	5	2	3	0
2	0	-3	-2	-5
6	5	2	3	
a				

Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos. Resultando:

3	2	-1	0		3	2	7	6		0	0	-8	-6
6	5	2	3	_	7	5	2	3	=	-1	0	0	0
2	0	-3	-2		2	5	4	5		0	-5	-7	-7

De los "Costos Totales" obtenidos; se puede apreciar que ahora si cada uno de ellos cumple la regla de obtener valores ceros o negativos. Por lo tanto se ha determinado el "Costo Mínimo" y por ende los "Itinerarios" que se deberán seguir para poder obtenerlo. El "Costo Total Mínimo" obtenido es de 39,500 unidades monetarias. Esto es:

COSTO MÍNIMO:

$$5X0 + 2X100 + 4X100 + 3X200 + 9X300 = 39,500$$
 costo mínimo

c) El "Costo Mínimo Total" obtenido fue de 39,500 unidades monetarias. Este "Costo", permite establecer la cantidad de unidades que se enviarán al se en cada ruta de transporte utilizada.

Por ende el **itinerario** a seguir para este caso es el siguiente:

• UNIDADES QUE SE ENVÍAN A CADA RUTA

ORIGEN	DESTINO	COSTO	UNIDADES
CLEVELAND	BOSTON	3	3500
CLEVELAND	CHICAGO	2	1500
BEDFORD	CHICAGO	5	2500
BEDFORD	St. LOUIS	2	2000
BEDFORD	LEXINGTON	3	1500
YORK	BOSTON	2	2500

d) Suponiendo que se quiere variar la demanda y esta resulta mayor 100 unidades más. Entonces, el Modelo de Programación Lineal modificado aplicando el "Método de Transporte"; correspondiente; se hará mediante el arreglo matricial. Esto es:

DESTINO	ВО	STON	СН	ICAGO	SAI	N LUIS	LEX	INGTON	ABASTO
CLEVELAND	3		2		7		б		5000
BEDFORD	7		5		2		3		6000
YORK	2		5		4		5		2500
DEMANDA	6	0000	2	1000	2	2000		1500	13500 14500

Como se podrá apreciar la suposición de **aumentar** la **demanda** en **1,000 unidades**; genera una **condición muy especial** en donde la **oferta** es **desigual** de la **demanda**; por lo tanto al cuadro original sufrirá una modificación consistente en incrementar un **renglón** con **costos unitarios nulos**, de tal forma que así se pueda compensar dicho **déficit**. Esto es:

DESTINO ORIGEN	BOSTON	CHICAGO	SAN LUIS	LEXINGTON	ABASTO
CLEVELAND	3	2	7	б	5000
BEDFORD	7	5	2	3	6000
	2	5	4	5	
YORK RENGLÓN	0	0	0	0	2500
INEXISTENTE					1000 14500
DEMANDA	6000	4000	2000	2500	14500

Una vez hecha esta modificación, se procede a obtener la **"Solución Inicial"**, utilizando como técnica el **"Método del Costo Mínimo"**.

Posteriormente proceder a verificar si esta solución es la óptima o en consecuencia buscar una segunda solución que sea la óptima y si no, seguir realizando iteraciones.

Resultando lo siguiente:

DESTINO ORIGEN	BOSTON	CHICAGO	SAN LUIS	LEXINGTON	ABASTO
CLEVELAND	1000	4000	7	6	5000
BEDFORD	7 2500	5	2 2000	3 1500	6000
VODY	2	5	4	5	
YORK RENGLÓN	2500	0	0	0	2500
INEXISTENTE				1000	1000 14500
DEMANDA	6000	4000	2000	2500	14500

Por lo tanto, la "Solución Inicial", utilizando el "Método del Costo Mínimo" es:

Ahora se procede a verificar si esta **"Solución Inicial"** es la óptima; en caso contrario se procede a buscar una segunda **"Solución Óptima"**, la cual partira de la **"Solución Inicial"**.

Para, verificar si la **"Solución Inicial"** es óptima; se procede evaluar los coeficientes de los **"Costos Modificados"** correspondientes a la **"Solución Inicial"**; a la que posteriormente se le restaran los **"Costos Originales"**, donde cuyos resultados deberán ser **ceros** o **valores negativos**. Esto es:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:

_		I	I	I	b
3	1	2	-2	-1	-4
7	1	6	2	3	0
2		1	-3	-2	-5
	4	3	-1	0	-3
	7	6	2	3	
а					

Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos.

Resultando o siguiente:

3	2	-1	0		3	2	7	6		0	0	-8	-6
7	6	2	3	•	7	5	2	3	=	0	1	0	0
2	1	-3	-2		2	5	4	5		0	-4	-7	-7
4	3	-1	0		0	0	0	0		4	3	-1	0

De los **"Costos Totales"** obtenidos; se puede apreciar que en tres de ellos no se cumple la regla de obtener valores ceros o negativos que es el correspondiente a la celdilla marcado en rojo cuyo resultado es positivo.

Por ende se procede a obtene una nueva iteración, a fin de obtener una nueva **"Solución Óptima"**.

De la siguiente forma:

Tomando como referencia a la celdilla cuyo valor final resultante fue positivo se procede a compensar y descompensar las adyacentes a fin de modificar la **"Solución Inicial"**.

Para este caso las celdillas involucradasque permiten generar una nueva solución son las siguientes:

1000	+	4000 -	5000
2500	-	+	2500
3500		4000	

1000 +2500	4000 - 2500	5000
2500 - 2500	2500	2500
3500	4000	

3500	1500	5000
	2500	2500
3500	4000	

Una vez hecha la compensación y descompensación la nueva "Solución Óptima" es la que se muestra en la siguiente "Matriz":

DESTINO ORIGEN	BOSTON	CHICAGO	SAN LUIS	LEXINGTON	ABASTO
,	3	2	7	6	
CLEVELAND	3500	1500			5000
	7	5	2	3	
BEDFORD		2500	2000	1500	6000
	2	5	4	5	
YORK	2500				2500
RENGLÓN	0	0	0	0	
INEXISTENTE				1000	1000
				1000	14500
DEMANDA	6000	4000	2000	2500	
					14500

Por lo tanto, la nueva "Solución Óptima", genera un "Costo Mínimo" de:

•
$$(3x3500) + (2x1500) + (5x2500) + (2x2000) + (3x1500) + (2x2500) + (0x1000) = 39,500$$

Ahora se procede a verificar si esta nueva **"Solución"** es la óptima; en caso contrario se procede a buscar una tercer **"Solución Óptima"**, la cual partirá de la primera **"Iteración"**.

Para, verificar si la nueva **"Solución"** es óptima; se procede evaluar de la misma forma que se hizo en la **"Solución Inicial"**.

Resultando lo siguiente:

Procediendo a obtener los **"Costos Modificados"** de las **"Celdas"** que no fueron ocupadas se procede a realizar lo siguiente:

Se coloca como referencia o costo pivote en la parte externa de la tabla el valor del costo más bajo o cero precedido de un signo negativo, ya sea en el renglón o columna donde hubo mas casilleros ocupados, aplicando las reglas:

$$a + b = c$$
; $a = c - b$; $b = c - a$

Esto es:

		ı	ı		b
	3	2	-1	0	-3
	6	5	2	3	0
	2	1	-2	-1	-4
	3	-2	-1	0	-3
ı	6	5	2	3	
	a				

Una vez obtenidos los **"Costos Modificados"** correspondientes a la **"Solución Inicial"** se procede a restarles los **"Costos Originales"**, en donde los resultados obtenidos para los **"Costos Totales"**, deberán ser ceros o valores negativos.

Resultando o siguiente:

3	2	-1	0		3	2	7	6		0	0	-8	-6
6	5	2	3	•	7	5	2	3	=	-1	0	0	0
2	1	-2	-1		2	5	4	5		0	-4	-6	-6
3	-2	-1	0		0	0	0	0		3	-2	-1	0

De los **"Costos Totales"** obtenidos; se puede apreciar que en uno de de ellos no se cumple la regla de obtener valores ceros o negativos que es el correspondiente a la celdilla marcado en rojo cuyo resultado es positivo.

Por ende se procede a obtene una nueva iteración, a fin de obtener una nueva "Solución Óptima".

Si observamos en la última iteración, ya no se puede más minimizar el **"Costo"**, porque la celdilla que resultó positiva no se compenetra con ninguna de las otras poara poder hacer la compensación y descompesación.

Por lo tanto se ha determinado el **"Costo Mínimo"** y por ende los **"Itinerarios"** que se deberán seguir para poder obtenerlo. El **"Costo Total Mínimo"** obtenido es de **32,000 unidades monetarias**. Esto es:

COSTO MÍNIMO:

3X3500 + 2X1500 + 5X2500 + 2X2000 + 3X1500 + 2X2500 + 0X1000 = 39,500 costo mínimo

El **"Costo Mínimo Total"** obtenido fue de **39,500 unidades monetarias**. Este **"Costo"**, permite establecer la cantidad de unidades que se enviarán al se en cada ruta de transporte utilizada.

Por ende el **itinerario** a seguir para este caso es el siguiente:

• UNIDADES QUE SE ENVÍAN A CADA RUTA

ORIGEN	DESTINO	COSTO	UNIDADES
CLEVELAND	BOSTON	3	3750
CLEVELAND	CHICAGO	2	1250
BEDFORD	CHICAGO	5	3000
BEDFORD	St. LOUIS	2	2250
BEDFORD	LEXINGTON	3	750
YORK	BOSTON	2	2500
R. INEX.	LEXINGTON	0	1000

e) Conclusiones: Se puede apreciar que en ambos casos el "Costo Total" disminuye; solo que en el primer caso si se logra obtener la "Solución öptima"; mientras que en el segundo bajo las consideraciones tomadas no se logra obtener en su totalidad la "Solución öptima".

También se puede apreciar que si uno de los dos rubros, que en este caso fue la **demanda** el **"Costo Mínimo Total"** obtenido si aumento con respecto al **"Costo Mínimo Total"** obtenido en el primer caso.

EJERCICIO 4⁴

Una empresa consultora se especializa en el desarrollo de sistemas de apoyo para la toma de decisiones. Dicha empresa ha obtenido un contrato para desarrollar un sistema de computación para apoyo de una compañía que se dedica a la educación (institución educativa). Las actividades que enlistó para comenzar la construcción de un plantel. Los tiempos de las actividades están dados en semanas.

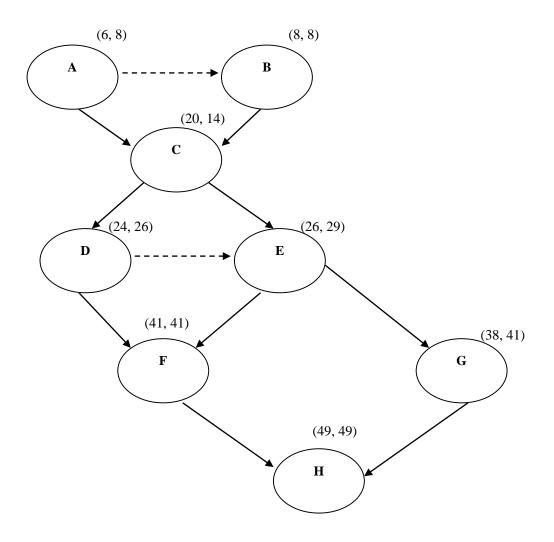
	DESCRIPCIÓN	ANTECEDENTE INMEDIATO	TIEMPO (semanas)
A	Levantamiento topográfico		6
В	Ejecución del diseño inicial.		8
С	Obtención de la aprobación del consejo	АуВ	12
D	Elección del arquitecto	С	4
E	Fijación del presupuesto	С	6
F	Finalización del diseño	D, E	15
G	Obtención del financiamiento	E	12
н	Contratación del constructor	F, G	8

- a) Desarrolle una red tipo PERT / CPM para este proyecto.
- b) Identifique la ruta crítica.
- c) Establezca sus conclusiones.

⁴ Problema propuesto extraído de David R. Anderson, Dennos J. Sweeney, Tomhas A. Williams. Introducción a los Modelos Cuantitativos para Administración; Grupo Editorial Iberoamérica S. A. de C. V., México, 1996. Problema Propuesto 8. Capítulo 10. Pág. 455.

SOLUCIÓN DEL EJERCICIO 4

a) La Red PERT/CPM, establecida, para el presente proyecto; es la siguiente:



b) Para poder determinar la "Ruta Critica"; elaboraremos las "Tablas " correspondientes a la determinación de los "Tiempos más Próximos", los "Tiempos más Lejanos" correspondientes.

Por lo tanto el procedimiento a seguir es el siguiente:

Primero se determinará la **"Tabla"** de los **"Tiempos más Próximos"**, de la siguiente forma:

EVENTO	EVENTO INM. PREC.	TIEMPO MAS PRO	OX. + TIE	MPO DE LA	ACT. =	TIEPO MAS PROX. MAX.
Α	-	0	+	6	=	6
В	-	0	+	8	=	8
С	Α	6	+	12	=	18
С	В	8	+	12	=	20
D	С	20	+	4	=	24
Е	С	20	+	6	=	26
F	D	24	+	15	=	39
F	E	26	+	15	=	41
G	E	26	+	12	=	38
Н	G	38	+	8	=	46
Н	F	41	+	8	=	49

Posteriormente, se determinará la **"Tabla"** de los **"Tiempos más Lejanos"**, de la siguiente forma:

EVENTO	EVENTO INM. SIG.	TIEMPO MAS LEJANO	-	TIEMPO DE LA ACT	. =	TIEPO MAS LEJANO MIN.
Н	-	-	-	-	=	49
G	Н	49	-	12	=	37
F	Н	49	-	8	=	41
Е	G	37	-	6	=	31
Е	F	41	-	6	=	35
D	F	41	-	15	=	26
С	D	26	-	12	=	14
С	E	31	-	12	=	19
В	С	14	-	6	=	8
Α	С	14	-	8	=	6
-	-	-	-	-	-	-

C) Las Conclusiones son las siguientes:

CONCLUSIONES

- Como se observa en la **solución** podemos decir que el tiempo estimado para dar termino a este proyecto requiere de **49 semanas**.
- Por lo tanto la Ruta Crítica es: B C E F H
- Al mismo tiempo nos podemos dar cuenta que en donde se puede llevar más tiempo es en tres aspectos principalmente que son:
 - * La aprobación del consejo.
 - * La finalización del diseño.
 - * La obtención del financiamiento.

En estos aspectos se recomienda poner especial cuidado y mayor atención con la finalidad de reducir tiempos y no consumir más tiempo del planeado.

