

1 de 6
 Quinto Semestre

CREATE SEQUENCE

Name

CREATE SEQUENCE -- define a new sequence generator

Synopsis

CREATE [TEMPORARY | TEMP] SEQUENCE name [INCREMENT [BY] increment]

 [MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]

 [START [WITH] start] [CACHE cache] [[NO] CYCLE]

Description

CREATE SEQUENCE creates a new sequence number generator. This involves

creating and initializing a new special single-row table with the name name. The

generator will be owned by the user issuing the command.

If a schema name is given then the sequence is created in the specified schema.

Otherwise it is created in the current schema. Temporary sequences exist in a

special schema, so a schema name may not be given when creating a temporary

sequence. The sequence name must be distinct from the name of any other

sequence, table, index, or view in the same schema.

After a sequence is created, you use the functions nextval, currval, and

setval to operate on the sequence. These functions are documented in Section

9.12.

Although you cannot update a sequence directly, you can use a query like

SELECT * FROM name;

https://www.postgresql.org/docs/8.1/static/functions-sequence.html
https://www.postgresql.org/docs/8.1/static/functions-sequence.html

2 de 6
 Quinto Semestre

to examine the parameters and current state of a sequence. In particular, the

last_value field of the sequence shows the last value allocated by any session.

(Of course, this value may be obsolete by the time it's printed, if other sessions are

actively doing nextval calls.)

Parameters

TEMPORARY or TEMP

If specified, the sequence object is created only for this session, and is

automatically dropped on session exit. Existing permanent sequences with

the same name are not visible (in this session) while the temporary sequence

exists, unless they are referenced with schema-qualified names.

name

The name (optionally schema-qualified) of the sequence to be created.

increment

The optional clause INCREMENT BY increment specifies which value is

added to the current sequence value to create a new value. A positive value

will make an ascending sequence, a negative one a descending sequence.

The default value is 1.

minvalue
NO MINVALUE

The optional clause MINVALUE minvalue determines the minimum value a

sequence can generate. If this clause is not supplied or NO MINVALUE is

specified, then defaults will be used. The defaults are 1 and -263-1 for

ascending and descending sequences, respectively.

3 de 6
 Quinto Semestre

maxvalue

NO MAXVALUE

The optional clause MAXVALUE maxvalue determines the maximum value

for the sequence. If this clause is not supplied or NO MAXVALUE is specified,

then default values will be used. The defaults are 263-1 and -1 for ascending

and descending sequences, respectively.

start

The optional clause START WITH start allows the sequence to begin

anywhere. The default starting value is minvalue for ascending sequences

and maxvalue for descending ones.

cache

The optional clause CACHE cache specifies how many sequence numbers

are to be preallocated and stored in memory for faster access. The minimum

value is 1 (only one value can be generated at a time, i.e., no cache), and this

is also the default.

CYCLE
NO CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue

or minvalue has been reached by an ascending or descending sequence

respectively. If the limit is reached, the next number generated will be the

minvalue or maxvalue, respectively.

If NO CYCLE is specified, any calls to nextval after the sequence has

reached its maximum value will return an error. If neither CYCLE or NO CYCLE

are specified, NO CYCLE is the default.

4 de 6
 Quinto Semestre

Notes

Use DROP SEQUENCE to remove a sequence.

Sequences are based on bigint arithmetic, so the range cannot exceed the range

of an eight-byte integer (-9223372036854775808 to 9223372036854775807). On

some older platforms, there may be no compiler support for eight-byte integers, in

which case sequences use regular integer arithmetic (range -2147483648 to

+2147483647).

Unexpected results may be obtained if a cache setting greater than one is used for

a sequence object that will be used concurrently by multiple sessions. Each session

will allocate and cache successive sequence values during one access to the

sequence object and increase the sequence object's last_value accordingly.

Then, the next cache-1 uses of nextval within that session simply return the

preallocated values without touching the sequence object. So, any numbers

allocated but not used within a session will be lost when that session ends, resulting

in "holes" in the sequence.

Furthermore, although multiple sessions are guaranteed to allocate distinct

sequence values, the values may be generated out of sequence when all the

sessions are considered. For example, with a cache setting of 10, session A might

reserve values 1..10 and return nextval=1, then session B might reserve values

11..20 and return nextval=11 before session A has generated nextval=2. Thus,

with a cache setting of one it is safe to assume that nextval values are generated

sequentially; with a cache setting greater than one you should only assume that the

nextval values are all distinct, not that they are generated purely sequentially.

Also, last_value will reflect the latest value reserved by any session, whether or

not it has yet been returned by nextval.

5 de 6
 Quinto Semestre

Another consideration is that a setval executed on such a sequence will not be

noticed by other sessions until they have used up any preallocated values they have

cached.

Examples

Create an ascending sequence called serial, starting at 101:

CREATE SEQUENCE serial START 101;

Select the next number from this sequence:

SELECT nextval('serial');

 nextval

 114

Use this sequence in an INSERT command:

INSERT INTO distributors VALUES (nextval('serial'), 'nothing');

Update the sequence value after a COPY FROM:

BEGIN;

COPY distributors FROM 'input_file';

SELECT setval('serial', max(id)) FROM distributors;

END;

6 de 6
 Quinto Semestre

Compatibility

CREATE SEQUENCE conforms to the SQL standard, with the following exceptions:

 The standard's AS <data type> expression is not supported.

 Obtaining the next value is done using the nextval() function instead of

the standard's NEXT VALUE FOR expression.

Obtenido de: https://www.postgresql.org/docs/8.1/static/sql-createsequence.html

Consultado: 27 de enero de 2017

